Storage Operators and Directed Lambda-Calculus Author(s):

نویسندگان

  • Rene David
  • Karim Nour
چکیده

Storage operators have been introduced by J. L. Krivine in [5] they are closed x-terms which, for a data type, allow one to simulate a "call by value" while using the "call by name" strategy. In this paper, we introduce the directed ;,-calculus and show that it has the usual properties of the ordinary ;,-calculus. With this calculus we get an equivalent-and simple-definition of the storage operators that allows to show some of their properties: * the stability of the set of storage operators under the fl-equivalence (Theorem 5.1.1); * the undecidability (and semidecidability) of the problem "is a closed X-term t a storage operator for a finite set of closed normal x-terms?" (Theorems 5.2.2 and 5.2.3); * the existence of storage operators for every finite set of closed normal ;,-terms (Theorem 5.4.3); * the computation time of the "storage operation" (Theorem 5.5.2). Resume. Les operateurs de mise en memoire ont && introduits par J. L. Krivine dans [5]; il s'agit de ;,-terms clos qui, pour un type de donnees, permettent de simuler "l'appel par nom" dans le cadre de "l'appel par valeur". Dans cet article, nous introduisons le 1-calcul dirig& et nous demontrons qu'il garde les proprietes usuelles du ,-calcul ordinaire. Avec ce calcul nous obtenons une definition &quivalente-et simple-pour les operateurs de mise en memoire qui permet de prouver plusieurs de leurs proprietes: -la stability de l'ensemble des operateurs de mise en memoire par la /I-equivalence (theor&me 5.1.1); -l'indecidabilite (et sa semi-decidabilit&) du probleme "un terms clos t est-il un operateur de mise en memoire pour un ensemble fini de termes normaux clos?" (theoremes 5.2.2 et 5.2.3); -l'existence d'operateurs de mise en memoire pour chaque ensemble fini termes normaux clos (theoreme 5.4.3); -une inegalite controlant le temps calcul d'un operateur de mise en memoire (theoreme 5.5.2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

A general storage theorem for integers in call-by-name λ-calculus

The notion of storage operator introduced in [5, 6] appears to be an important tool in the study of data types in second order λ-calculus. These operators are λ-terms which simulate call-by-value in the call-by-name strategy, and they can be used in order to modelize assignment instructions. The main result about storage operators is that there is a very simple second order type for them, using...

متن کامل

A General Type for Storage Operators

In 1990, J.L. Krivine introduced the notion of storage operator to simulate, in λ-calculus, the ”call by value” in a context of a ”call by name”. J.L. Krivine has shown that, using Gődel translation from classical into intuitionistic logic, we can find a simple type for storage operators in AF2 type system. In this present paper, we give a general type for storage operators in a slight extensio...

متن کامل

Labeling techniques and typed fixed-point operators

Labeling techniques for untyped lambda calculus were developed by Lévy, Hyland, Wadsworth and others in the 1970’s. A typical application is the proof of confluence from finiteness of developments: by labeling each subterm with a natural number indicating the maximum number of times this term may participate in a reduction step, we obtain a strongly-normalizing approximation of β, η -reduction....

متن کامل

Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators

The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995